Event-Related Potentials as Implicit Measures of Vocabulary in Individuals with Autism

Emily Coderre 1, Mariya Chernenok 1, Jessica O’Grady 1, Laura Bosley 1, Barry Gordon 1, 2, & Kerry Ledoux 1

1 Cognitive Neurology/Neuropsychology, Department of Psychology, The Johns Hopkins University School of Medicine, Baltimore, MD
2 Department of Cognitive Science, The Johns Hopkins University, Baltimore, MD

Introduction

Assessments of the cognitive operations responsible for language are typically quantified by measuring overt behaviors such as response times or verbal repetitions. However, such explicit measures assume an understanding of task goals and an ability to execute the required response. In certain populations, such as non- or minimally-verbal low-functioning adults with autism (LFA), in whom such measures might be difficult or impossible to obtain, implicit measures of cognitive abilities that do not require explicit understanding and cooperation are essential.

Event-related potentials (ERPs) can serve as implicit measures of vocabulary knowledge in normal adults (Ledoux et al., 2015). In a picture-word congruity paradigm, a N400 effect was observed for high-frequency “known” words but not for low-frequency “unknown” words, suggesting that the N400 effect can reliably estimate vocabulary knowledge in a population of normal adults. Although ERPs hold potential for cognitive assessment in the absence of behavioral responses, the utility of these measures in individuals with autism has not been determined. Here we investigate whether ERPs can serve as within-subject measures of vocabulary knowledge in individuals with autism with a range of functioning levels.

Methods

Participants
- 24 participants with autism; mean age 29 years (range 15-66); 23 males; 19 Caucasian, 1 African American, 3 Asian, 1 Hispanic.
- 9 participants were enrolled in adult or educational programs specific to assisting individuals with autism and required direct 24-hour staff support and/or parental supervision.

Neuropsychological testing
- **Receptive language abilities:** Peabody Picture Vocabulary Test, Fourth Edition (PPVT-4; Dunn & Dunn, 2007)
- **Verbal and non-verbal intelligence:** Kaufman Brief Intelligence Test, Second Edition (K-BIT-2; Kaufman & Kaufman, 2004)
- **Autism symptoms:** Autism Diagnostic Observation Schedule (First Edition (ADOS-1) or Second Edition (ADOS-2) depending on the version current at the time of testing; Lord et al., 2000)
- For 3 participants there was no appropriate module of the ADOS, as currently no modules address nonverbal adolescents or adults. For these participants, “adapted” modules were performed.
- Some participants were unable to complete behavioral testing due to lack of compliance or inability to understand task instructions.

Stimuli
- 80 high-frequency words (average SubtlexUS (Brysbaert & New, 2009) log10 frequency rating = 3.14, SD = 0.6).
- Because of their high frequency, these words were expected to be “known” to participants.
- 80 low-frequency words (average SubtlexUS log10 frequency rating = 0.85, SD = 0.5).
- Because of their low frequency, these words were expected to be “unknown” to participants.
- Corresponding high-resolution color photographs auditory recordings

Procedure
- Picture-word congruency paradigm: each picture presented twice, once with congruent and once with incongruent word pairing

EEG Data Acquisition and Preprocessing
- EEG recorded at 250 Hz using an Electrical Geodesics Inc. GES 300 EEG System with 256-channel HydroCel Geodesic Sensor Nets and Netstation version 4.3
- Bandpass filter 0.1-30Hz. Motion and eye movement artifacts corrected using ICA decomposition
- Electrodes grouped into 9 clusters for analyses

Results

Correlations with neuropsychological assessments
- PPVT: verbal, KBIT: verbal, KBIT: non-verbal

Discussion

In the group analysis, “known” words elicited an N400 effect over centro-parietal scalp, whereas there was no such effect for “unknown” words. These findings replicate the results observed in normal adults by Ledoux et al. (2015) and demonstrate that ERPs can serve as within-subject measures of vocabulary knowledge in individuals with autism across a range of functioning levels.

Correlational analyses showed a significant correlation between PPVT scores and N400 effects, such that participants with better vocabulary abilities (larger PPVT scores) showed larger rising responses. This correlation replicates previous findings in the literature (D’Arcy et al., 2003) and suggests that the N400 response is accurately capturing vocabulary knowledge without reliance on behavioral measures.

The individual data demonstrate significant heterogeneity among the participants. While some individuals had large N400 responses in “known” words, others showed little difference between congruent and incongruent stimuli in either “known” or “unknown” words. This variability suggests that the N400 may be better suited as an implicit estimate of vocabulary knowledge in individuals with autism who show larger effects. Factors such as the ability to tolerate the EEG net and the number of sessions required to obtain enough clean data should also be considered.

Conclusions

Overall, the N400 distinguished between “known” and “unknown” vocabulary in individuals with autism and correlated with receptive language abilities, although there was significant individual variation. Despite the heterogeneity inherent in autism, ERPs can serve as implicit measures of vocabulary in this population, and hold especially strong potential for language assessment in low-functioning individuals.

References

Acknowledgements

This work was supported in part by the National Institute of Mental Health (Grant MH080471) and the National Institute on Disability and Rehabilitation Research (Grant 5939001007). The authors would like to thank the following for their contributions: M. Brink, J. Fine, K. Makson, K. Benbow, M. O’Grady, K. Ledoux.